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Abstract  

The satellite remote sensing reflectance (Rrs(λ)) at two short blue bands (410 or 412 nm and 443 

nm) are prone to large uncertainties in coastal and inland waters, prohibiting algorithms from 

generating reliable ocean color products associated with these bands. In this study, we developed 

an algorithm to estimate Rrs(41x) and Rrs(443) when the satellite Rrs(λ) in blue bands suffer from 

large uncertainties. The algorithm first determines the Rrs(λ) spectral shape from the satellite-

measured Rrs(λ) values at three wavelengths of 48x (486, 488, or 490), 55x (547, 551, or 555), 

and 67x (667, 670, or 671) nm. The algorithm then derives Rrs(41x) and Rrs(443) from the 

estimated Rrs(λ) spectral shape with algebraic formulations. We assessed the algorithm 

performance with satellite (SeaWiFS, MODISA, and VIIRS-SNPP) and in situ Rrs(λ) matchups 

from global waters. It is shown that the uncertainties of estimated Rrs(41x) and Rrs(443) are 

substantially smaller than the original satellite products when applicable. Besides, 

implementation of the algorithm contributes to a significant increase in the number of utilizable 

Rrs(41x) and Rrs(443) values. The algorithm is relatively stable and is best applicable to the 

satellite Rrs(λ) spectra for which the Rrs(48x) and Rrs(55x) measurements are subject to small 

uncertainties. The demonstrations support the application of the blue-band estimation algorithm 

to a wide range of coastal waters.     

Keyword: Remote sensing reflectance; Blue bands; Spectral shape; Atmospheric correction; 

SeaWiFS; MODIS; VIIRS. 
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1. Introduction 

Ocean color satellites provide a means of collecting remote sensing reflectance (Rrs(λ)) on 

spatial and temporal scales unattainable by conventional in situ measurements. The Rrs(λ) data 

allow for the derivation of important biological and biogeochemical properties of the upper 

oceans, such as phytoplankton chlorophyll-a concentration (Chl) (Hu et al., 2012; McClain, 

2009; Wang and Son, 2016), phytoplankton light absorption (Wang et al., 2017; Wei and Lee, 

2015), colored dissolved organic matter (CDOM) absorption (Mannino et al., 2014; Wei et al., 

2016a; Yu et al., 2016), and primary production (Behrenfeld et al., 2005; Lee et al., 2015a), etc. 

For reliable estimation of these bio-optical properties, it is vital to obtain accurate Rrs(λ) product 

from satellites over a wide spectral domain, particularly at the blue bands of 41x (410 or 412) nm 

and 443 nm.    

The ocean color satellites, including the decommissioned Sea-viewing Wide Field-of-view 

Sensor (SeaWiFS, 1997–2010) and the operational Moderate Resolution Imaging 

Spectroradiometer (MODIS) onboard the Aqua satellite (MODISA, 2002–present) and Visible 

Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting 

Partnership satellite (VIIRS-SNPP, 2011–present), retrieve Rrs(λ) from the radiance measured at 

the top of atmosphere (TOA) through atmospheric correction (AC). Operational AC algorithms 

usually start with the selection of an aerosol model by assuming null contribution of water-

leaving radiance (Lw(λ)) at the near-infrared (NIR) or shortwave infrared (SWIR) bands (Antoine 

and Morel, 1999; Gordon and Wang, 1994; Wang, 2007; Wang and Shi, 2007). This “black-

pixel” assumption works well in open oceans, but is faced with some difficulties in coastal 

regions using the NIR and SWIR approach. The strongly absorbing aerosols, for instance, can be 

prominent in the coastal waters near anthropogenic sources of fossil-burning products, soot, and 
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smog, or under the influence of dust transport. The weakly or strongly absorbing aerosols are 

hardly discriminable from radiance measurements in the NIR/SWIR domain but quite distinctive 

at short blue wavelengths (IOCCG, 2010). That being said, the standard AC schemes cannot 

correctly estimate the strongly absorbing aerosols and often fail to yield robust Rrs(λ) products at 

the blue wavelengths in many coastal regions due to lack of aerosol vertical distribution 

information (IOCCG, 2010; Kahn et al., 2016). As a consequence, and expectedly, the satellite-

derived Rrs(41x) and Rrs(443) products are prone to large uncertainties in the coastal waters 

(Antoine et al., 2008; Feng et al., 2008; Hlaing et al., 2013; Qin et al., 2017; Zibordi et al., 2009). 

Apart from atmospheric correction, the large uncertainty in satellite Rrs(41x) product is also 

related to system vicarious calibration and instrument degradation (Franz et al., 2018). The 

relatively large uncertainties at blue bands and the subsequent lack of utilizable data at these two 

bands add to the difficulties of satellite ocean color applications in coastal regions (Mouw et al., 

2015).  

To address the blue-band Rrs(λ) quality issues, a great deal of effort has been invested. Gordon 

et al. (1997) and Chomko and Gordon (2001) developed an AC procedure to quantify the 

strongly absorbing aerosol contribution under dust-dominating conditions. Application of their 

methods, however, remains impractical because the vertical distribution of absorbing aerosols in 

the atmosphere is not known a priori (Banzon et al., 2009; IOCCG, 2010). In another case study, 

Hu et al. (2000) tested a nearest-neighbor method to account for the aerosol contribution at the 

NIR bands, with reasonable results. Variants of the standard AC schemes also emerged. Oo et al. 

(2008) reported improved atmospheric correction for turbid coastal waters by placing constraints 

onto Rrs(412) within their AC procedures. For highly absorptive waters, He et al. (2012) 

proposed null water-leaving radiance at 412 nm so as to make a guess of the aerosol contribution 
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at that band, which was then used for atmospheric correction. In analogy, Wang and Jiang (2018) 

forced the negative Rrs(410) values from VIIRS-SNPP to zeroes to estimate the aerosol 

contributions and ultimately to obtain improved Rrs(λ) products.  

Besides the above contributions, there exists another line of methodology to deal with the 

blue-band Rrs(λ) measurements. Basically, this category of methods attempts to “correct” the 

problematic blue-band Rrs(λ) data. In this regard, Ransibrahmanakul and Stumpf (2006) tested a 

power-law function to account for the spectral artifacts caused by the absorbing aerosols in the 

northeast U.S. coasts. D'Alimonte et al. (2008) derived multi-linear regression coefficients from 

satellite and in situ Rrs(λ) matchups and further applied those coefficients to estimate Rrs(412) for 

the same region. Undoubtedly, all strategies mentioned above have demonstrated varying 

degrees of success, specific to the sensors, dataset, or environments, in improving blue-band 

Rrs(λ) quality. Yet, it remains an open question to implement such algorithms as a universal 

approach to global coastal and inland waters where the satellite Rrs(41x) and Rrs(443) data are of 

low quality.  

The blue-band Rrs(λ) data are needed for many bio-optical retrievals in the upper water 

columns. Among others, Rrs(41x) and Rrs(443) are indispensable for many semi-analytical 

algorithms to retrieve the phytoplankton and CDOM absorption coefficients from multiband 

satellite Rrs(λ) (IOCCG, 2006; Lee et al., 2002; Wei et al., 2019; Werdell et al., 2013). Rrs(443) 

data may also be required for Chl estimation in both open and coastal oceans (Hu et al., 2012; 

O'Reilly et al., 1998; Wang and Son, 2016). Use of Rrs(41x) and Rrs(443) data with large errors 

can result in unrealistic retrievals for the water bio-optical properties (Werdell et al., 2018) and 

biased Chl products (Hyde et al., 2007). It is also risky that merging of such satellite products 

may generate spurious trends in ocean color time series. In order to best interpret the large-scale 
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and long-term ocean color retrievals, this long-standing problem associated with the blue-band 

satellite Rrs(λ) measurements needs to be resolved.  

In this study, we propose a spectral shape based algorithm to estimate Rrs(41x) and Rrs(443) 

when the satellite Rrs(λ) spectra at blue bands are subjected to large uncertainties. Such 

estimation will help ultimately enhance the bio-optical retrievals with the ocean color algorithms 

requiring Rrs(41x) and/or Rrs(443) data. In the following, we first describe the evaluation data 

from SeaWiFS, MODISA, and VIIRS-SNPP, the proposed algorithm, and relevant analyses 

(Section 2). Next, we demonstrate the algorithm performance in estimating Rrs(41x) and Rrs(443) 

by comparison with in situ matchup measurements (Section 3). Finally, we discuss the algorithm 

applicability, uncertainty, potential impacts on satellite bio-optical retrievals, and potential 

applications to satellite image processing (Section 4).  

 

2. Data and methods  

2.1 Satellite and in situ Rrs(λ) matchups 

The present study is based on satellite Rrs(λ) spectra and concurrent in situ matchup 

measurements. There were 2540 and 3639 matchups extracted for SeaWiFS and MODISA, 

respectively, from the SeaWiFS Bio-optical Archive and Storage (SeaBASS) (Werdell and 

Bailey, 2005). A total of 2348 matchups were also assembled for VIIRS-SNPP, with the in situ 

and satellite Rrs(λ) obtained from SeaBASS and NOAA CoastWatch, respectively. The Rrs(λ) 

matchups were constructed in accordance with the availability of in situ data and the filtering 

criteria for satellite data (Bailey and Werdell, 2006; Mélin et al., 2011; Zibordi et al., 2009). 

First, the satellite data within a 5×5 pixel box centered at the in situ measurement location were 

considered. Second, the satellite data within the box were checked with the quality-flagging 
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system (QFS), l2_flags: all pixels flagged as land, cloud, stray light, high glint, low radiance at 

555 nm, high TOA radiance, or atmospheric correction failure were excluded from subsequent 

analysis. The third criterion applied was that at least 50% of the satellite pixels within the box are 

valid. Then, it was ensured that the solar zenith angle and sensor zenith angle are within 70° and 

60°, respectively. The maximum time difference between satellite overpass and in situ sampling 

was set to ± 3 hours. The allowed maximum coefficient of variation of Rrs(λ) inside the pixel box 

was by default 15%. To make sure of clear sky, the criterion for maximum difference between 

the in situ measured and modeled solar irradiance at sea surface is 20%. Figure 1 shows the 

geographic locations for the in situ and satellite matchups, most of which are located in 

nearshore regions with water depth shallower than 1000 m. We note that the 5×5 pixel box and 

the time interval of ± 3 hours are a compromise between the number of matchups and the quality 

of matchups determined for global waters by SeaBASS. Zibordi et al. (2009) and Mélin et al. 

(2011) recommended more restricted criteria with a 3×3 pixel box and a time interval of ± 2 

hours for satellite validations in coastal waters. For the data sets used in this study, we tested the 

sensitivity of matchups to the different pixel boxes and time intervals but found negligible 

difference in the uncertainties of the resulted matchups. The criterion of ± 2 h time difference, 

however, reduced significantly the number of matchups by < ~10%. This observation justifies 

the use of the data filtering criteria of 5×5 pixels and ± 3 hours. 

SeaWiFS and MODISA Rrs(λ) data were generated with the l2gen package at the NASA 

Ocean Biology Processing Group (OBPG) during the latest reprocessing (R2018.0). The 

atmospheric correction was based on the classical scheme of Gordon and Wang (1994) and 

implemented with an iterative scheme to estimate the aerosol radiance at the NIR bands (Bailey 

et al., 2010). A total of 80 aerosol distributions were established and used during the processing 
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(Ahmad et al., 2010). The SeaWiFS Rrs(λ) products have five bands centered at 412, 443, 490, 

555, and 670 nm, while the MODISA Rrs(λ) data have approximately the same nominal center 

wavelengths, including 412, 443, 488, 547, and 667 nm.  

The VIIRS-SNPP Rrs(λ) data were processed with the Multi-Sensor Level-1 to Level-2 

(MSL12) ocean color data processing system at the NOAA Center for Satellite Applications and 

Research (STAR). MSL12 is based on the NASA SeaWiFS Data Analysis System (SeaDAS) 

version 4.6 with modifications. Unlike SeaWiFS and MODISA processing, MSL12 used the 

aerosol look-up table (LUT) of 12 aerosol models derived from Shettle and Fenn (1979). The 

VIIRS-SNPP Rrs(λ) data were generated with the NIR-SWIR atmospheric correction algorithm 

(Wang, 2007; Wang and Shi, 2007; Wang et al., 2009). In addition, the algorithm of Wang and 

Jiang (2018) was used to estimate the blue-band Rrs(λ) wherever Rrs(410) is negative. The 

resultant VIIRS-SNPP Rrs(λ) data have five wavelengths at 410, 443, 486, 551, and 671 nm; and 

no negative Rrs(410) and Rrs(443) values exist. 

We computed the quality assurance (QA) scores for each of the satellite Rrs(λ) spectra to 

quantitatively assess their data quality. The QA model (Wei et al., 2016b) was initially designed 

with nine visible bands, collectively representing the heritage and operational ocean color 

sensors. In the present study, we only considered the five “common” spectral bands centered 

around 412, 443, 488, 551, and 670 nm. As such, all the QA scores are distributed at six discrete 

levels of 0, 0.2, 0.4, 0.6, 0.8, and 1, with 1 representing the highest quality and 0 the lowest 

quality. Use of such common bands for the QA derivation facilitates the subsequent comparison 

of the obtained QA scores among different ocean color sensors. Recognizing the slight difference 

between three ocean color sensors’ nominal center wavelengths and the five common bands of 

the QA model, we stress that this difference has a limited impact on the QA results. In Figure 2, 
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we compare the frequency distribution of QA scores for three satellite sensors. According to the 

comparison, about 50% of satellite Rrs(λ) data have the highest quality with QA = 1 and 30% of 

them show relatively good quality with QA = 0.8. The rest 20%, however, are found with lower 

quality scores (QA ≤ 0.6). In subsequent analysis, the satellite Rrs(λ) data are divided into three 

subgroups: high-QA (QA ≥ 0.8), moderate-QA (0.4 ≤ QA ≤ 0.6), and low-QA (QA ≤ 0.2) data. 

The moderate- and low-QA data are the focus of our analysis.  

 

2.2 Blue-band estimation algorithm 

The blue-band estimation (BBE) algorithm consists of three components: a look-up table for 

the Rrs(λ) spectral shapes, spectral matching, and spectral estimation. The three components are 

described in below with details.  

(1) Rrs(λ) spectral shapes 

The Rrs(λ) spectral shapes are represented by a total of 1768 normalized remote sensing 

reflectance spectra, nRrs(λ). These spectra were derived from hyperspectral Rrs(λ) spectra (400–

700 nm), which were originated from both in situ measurements and radiative transfer 

simulations. A description of the measurements and simulations can be found in Wei et al. 

(2016b) and Wei et al. (2019), respectively. The Rrs(λ) spectra are representative of a wide range 

of waters with Chl varying from ~0.02 mg m-3 to > 50 mg m-3. The hyperspectral Rrs(λ) data 

were sub-sampled into five discrete bands at 412, 443, 488, 551, and 670 nm. The differences in 

the nominal center wavelengths among three sets of satellite Rrs(λ) products are suppressed as 

they are not critical in the present context. The obtained five-band Rrs(λ) spectra were then 

normalized by their respective root of the sum of squares (RSS), leading to 
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(λ )
 nR

rs
(λ

i
) = R

rs i i
 

1/2
,   = 1, 2, 3, 4 and 5   (1) 

∑
5

R ( )2
rs

λ
j 

 j=1 

where nRrs(λ) is dimensionless and the subscripts 1–5 correspond to the five bands from 412 nm 

to 670 nm. The nRrs(λ) spectra are characteristic of a few unique features. First, the nRrs(λ) 

spectral ratios at any two random bands remain the same with those of the corresponding Rrs(λ) 

spectra. Second, the spectral curvature of nRrs(λ) remains unchanged in comparison to Rrs(λ). 

Third, the magnitudes of nRrs(λ) always vary between 0 and 1. Last, the sum of squares of nRrs(λ) 

at all five bands is equal to 1. In this context, these nRrs(λ) spectra describe the spectral shapes 

for the corresponding Rrs(λ) spectra.  

In Figure 3, we illustrate the range of variation of the spectral values at 41x and 443 nm and 

related spectral ratios for the normalized reflectance of the LUT (denoted nR
lut

rs
(λ) ) and those for 

the in situ data concurrent with satellite overpass. The evaluation data and the LUT exhibit a 

very similar pattern of variation, with the latter spanning over a slightly wider range. Most of the 

evaluation data have nRrs(41x) and nRrs(443) lower than 0.7 and 0.6, respectively. The 

nRrs(41x)/nRrs(443) and nRrs(443)/nRrs(55x) ratios of the evaluation data are confined within a 

much narrower domain (0.6–1.1 and 0.2–1.1, respectively) than the LUT. Outliers do exist, 

particularly for the SeaWiFS matchup data. Overall, the range of variation of all data sets shown 

in Figure 3 is about the same as that of the compiled data in Valente et al. (2016). 

(2) Spectral matching 

For a satellite Rrs(λ) spectrum in question, the first step is to determine a “true” spectral shape 

as a reference. For this purpose, we take advantage of the fact that satellite Rrs(48x) and Rrs(55x) 

measurements usually have good quality (Antoine et al., 2008; Hlaing et al., 2013; Zibordi et al., 

2009). The Rrs(67x) data are sometimes subjected to large uncertainties, but their impact on the 
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222 

223 

224 

225 

model performance is limited; we will discuss this problem in the sensitivity analysis in Section 

3.4. As such, the satellite Rrs(48x), Rrs(55x), and Rrs(67x) can be used as a basis for further 

processing. First, following the spectral angle mapper (SAM) (Kruse et al., 1993), we quantify 

the spectral similarity between satellite-derived Rrs(48x), Rrs(55x), and Rrs(67x) values and each 

of the nR
lut

rs
(λ)  spectra by the cosine distance 

∑
5

 lut

nR ) R 
rs (λ �i rs (λi )

 d = 1− i=3   (2) 

∑
5 5

nR
lut (λ )

2 2

 rs i  ∑ [Rrs (λi )]
i=3 i=3

where d is the cosine distance between the vectors of nR
lut

rs
(λ)  and satellite Rrs(λ) at 48x, 55x, 

and 67x nm bands. Second, we search for the minimum d and locate the corresponding nR
lut

rs
(λ)  

spectrum from the LUT. Such selected nR lut

rs
(λ) spectrum is regarded as the spectral shape for the 

satellite Rrs(λ) in question. 

(3) Spectral estimation 

According to Eq. (1), the satellite Rrs(41x) and Rrs(443) in question can be normalized as 

below  

 Rrs (41x)



1/2
= nRrs (41x)

 R ( 2
rs 41x) + Rrs (443)2 + R

2
rs (48x) + Rrs (55x)2 + R

2 
 

rs (67x) 
   (3) 
 Rrs (443)

nR 43)
 

1/2
= rs (4

 R
2

r (41x)2 + + 2 
s Rrs (443) R

2 2
rs (48x) + Rrs (55x) + Rrs (67x) 

where Rrs(41x), Rrs(443), nRrs(41x), and nRrs(443) are unknown. Since we have determined the 

spectral shape through spectral matching, we substitute nRrs(41x) and nRrs(443) in Eq. (3) with 

nR
lut

rs
(412)  and nR

lut

rs
(443) , respectively. As a result, Eq. (3) can be rewritten as   
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1/2

R
rs

(48x)2 + R (55x)2 
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+ R 2

R rs
(67x)

 r lut


rs (41x) =  nR 4

n lut  × ( 12)
R

rs
(488)2 + lut (551)2 + lut (670)2 rs

nR
rs

nR
rs 

    (4) 
  R +

1/2

( x)2
rs

48 R
rs

(55x)2 + R (67x)2 
Rr (443) =  rs

 ×nR
lut

s lut 2 lut 2 lut
(443)

 nR
rs

(488) + nR
rs

(551) + nR
rs

(670)2


rs

where Rrs(41x) and Rrs(443) are estimated by both satellite Rrs(λ) data at the three bands of 48x, 

55x, and 67x nm and nR
lut

rs
(λ)  data.  

 

2.3 Metrics for uncertainty evaluation 

The relative difference (ɛ) was computed to assess the uncertainty of satellite products 

including Rrs(λ) spectral values at 41x, 443, 48x, 55x, and 67x nm, and the Rrs(λ) spectral ratios 

at 41x and 443 nm band, i.e., R
4 1 x
4 4 3

, and the ratios at 443 and 55x nm, i.e., R
443
55 x

 , as 

 ε S1 −= S2 ×100%  , (5) 
S2

where S1 and S2 refer to the satellite-derived values and the corresponding in situ values, 

respectively. The median of the relative difference (ɛ) or bias was derived as  


ε S − S 

 = median
1 2

×100%  . (6) 
 S2 

Further, we derived the absolute percentage difference (APD, denoted as |ɛ|) as 

 − 
ε S S 

 = median
1 2

×100% . (7) 
 S2 

The root-mean-square deviation (RMSD) was also computed to assess the accuracy of satellite 

products, as 

1 N
2

 RMSD = ∑(Si ,1 − Si ,2
N

)  . (8) 
i=1
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̅ �256 In analogy to ɛ, the unbiased relative difference (denoted as ϕ) was calculated as, 

2
∑

N S
i,1 − S

 φ = i,2 ×100%  , (9) 
N i=1 S

i,1 + S
i,2

where Si,1 and Si,2 are the inherent optical properties derived from the satellite Rrs(λ) data and in 

situ Rrs(λ) matchup data. The unbiased absolute percentage difference (UPD, denoted as |ϕ|) was 

2 N S S
 φ ∑ i,1 −

= i,2 ×100%  . (10) 
N i=1 Si,1 + Si,2

 

2.4 Sensitivity analysis 

The sensitivity of Rrs(41x) and Rrs(443) estimation to the uncertainties of the algorithm input 

values of Rrs(48x), Rrs(55x), and Rrs(67x) was assessed with the IOCCG (2006) synthetic Rrs(λ) 

data after adding uncertainties to Rrs(48x), Rrs(55x), and Rrs(67x). The hyperspectral Rrs(λ) data 

of IOCCG (2006) were first sampled at 412, 443, 488, 551, and 670 nm. The resultant multiband 

Rrs(λ) spectra were then clustered based on the cosine distance as quantified by Eq. (2). To 

simplify, we assumed three classes to represent these spectra (Classes-1, -2, and -3). As shown in 

Figure 4, each of three classes is characteristic of a distinctive spectral shape, roughly 

corresponding to blue, blue-green, and green-yellow colors. For Class-1 water, the maximum 

spectral values are often present in the blue bands, while Rrs(670) is usually very small. In terms 

of the trophic status, Class-1 is found with low Chl of 0.03–0.7 mg m−3 (0.14 mg m−3 on 

average). Class-2 water is characteristic of moderate Rrs(412) and Rrs(670) values, and generally 

of moderate Chl, ranging from 0.3 to 10.0 mg m−3 (1.6 mg m−3 on average). Class-3 waters are 

representative of relatively turbid environments, with high Rrs(670) but relatively small Rrs(412) 

values, where Chl are high, varying from 1.5 to 30.0 mg m−3 (15 mg m−3 on average). 
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In the following, the Rrs(λ) spectra within each of three classes were used to synthesize error-

disturbed reflectance, Rrs(λ). We investigated a simplified situation where only one of Rrs(488), 

Rrs(551), or Rrs(670) values was subjected to uncertainty, while the other two were error-free. 

The error-disturbed Rrs(λ) value was simulated as below 

 %R
rs

(λi
) = R

rs
(λi

)× (1+ 2ε ⋅ℜ)   (11) 

where λi refers to 488, 551, or 670 nm, ε is the relative error varying from −50% to 50% (with a 

5% step), and ℜ is a random value between 0 and 1. For each ε, Eq. (11) was repeated 100 times, 

leading to a total of 17300, 13700, and 19000 error-disturbed Rrs(λi) values for Classes-1, -2, and 

-3, respectively. From these synthetic reflectance, new Rrs(412) and Rrs(443) values were 

estimated with the BBE algorithm and then compared with known values to quantify their 

difference. 

It is noted that the uncertainty of satellite-derived Rrs(λ) products remains difficult to 

characterize as it is not only spectrally variable but dependent on environmental conditions as 

well as instrumental calibration (Antoine et al., 2008; Hu et al., 2013; Wei et al., 2018). To gain 

further perspective, we considered four simplistic scenarios with different combinations of 

uncertainties simultaneously assigned to Rrs(488), Rrs(551), and Rrs(670). Table 1 lists the 

amplitudes of the absolute percentage errors commonly observed in the ocean color satellite 

Rrs(λ) products (Antoine et al., 2008; Hlaing et al., 2013; Zibordi et al., 2009). In addition, we 

also considered a particular scenario with zero uncertainty for the purpose of comparison. The 

following model was used to create error-disturbed Rrs(λ) at 488, 551, and 670 nm,   

 %R
rs

(488,551,670) = R
rs

(488,551,670) ⋅ 1+ 2 (2ℜ −1) ⋅ | ε | 488,551,670    (12) 

where |ɛ|488,551,670 refers to the absolute percentage errors at 488, 551, and 670 nm in Table 1 and 
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ℜ is a random number between 0 and 1. Eq. (12) predicts spectrally coherent uncertainties, 

where the relative errors share the same positive or negative signs at 488, 551, and 670 nm. As 

the above, Eq. (12) was repeated 100 times for each Rrs(λ) spectrum within each water class to 

generate the corresponding Rrs(λ) values.  

 

3. Results  

3.1 Comparison of satellite and in situ Rrs(λ) matchups 

We first assessed the satellite Rrs(48x), Rrs(55x), and Rrs(67x) uncertainties based on the 

satellite and in situ matchups as the Rrs(λ) data quality at these three bands is important for the 

implementation of the BBE algorithm. Comparisons of three groups of analyses in Table 2 

indicate that the satellite Rrs(48x), Rrs(55x), and Rrs(67x) are prone to increasingly larger 

uncertainties with the decrease of QA scores, and vice versa. For the high-QA satellite data, 

specifically, Rrs(48x) and Rrs(55x) only suffer an absolute relative difference of 10%–13% and a 

negative bias varying between 0% and −10%. Even at the red band of 67x nm, the analyses show 

a fairly small uncertainty for the reflectance values, with |ɛ| varying between 11% and 22% and ɛ 

between −16% and 2%. In comparison to high-QA data, the moderate-QA group has much fewer 

data points. Also, Rrs(48x), Rrs(55x), and Rrs(67x) measurements in this group are found with 

increased uncertainties, particularly for |ɛ|. The low-QA group only accounts for a very small 

portion of the satellite measurements used herein. Their Rrs(48x), Rrs(55x), and Rrs(67x) 

measurements are susceptible to almost doubled relative differences (with |ɛ| up to 45%) and 

biases (with ɛ beyond −44%), in comparison to the high-QA group.  

Similar to Rrs(48x), Rrs(55x), and Rrs(67x), the uncertainties of satellite Rrs(41x) and Rrs(443) 

are also found to increase with decreasing QA scores (Table 3). Taking MODISA as an example, 
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the Rrs(412) uncertainty increased from |ɛ| = 27% in high-QA group to |ɛ| = 51% for moderate-

QA group, and finally to |ɛ| = 89% for low-QA data. It is also noted that many SeaWiFS and 

MODISA Rrs(412) values in these datasets are negative, but it is rare to observe negative 

Rrs(410) values for VIIRS-SNPP due to a recent improvement made by Wang and Jiang (2018). 

Exclusion of these negative Rrs(41x) data from evaluation, however, has resulted in a significant 

reduction in the total numbers of available matchups for Rrs(41x). Particularly for SeaWiFS and 

MODISA, the numbers of Rrs(412) matchups for moderate- and low-QA subgroups are about 

15%–30% less than Rrs(443). The uncertainties of satellite Rrs(41x) and Rrs(443) are generally 

greater than the corresponding Rrs(48x) and Rrs(55x), which is consistent with earlier analyses 

(Hlaing et al., 2013; Qin et al., 2017; Zibordi et al., 2009). This feature can be partly attributable 

to the relatively small values of Rrs(41x) and Rrs(443) in the evaluation data, and partly to the 

relatively large uncertainty of in situ measurements at these two bands in coastal waters (also see 

Hooker et al., 2002).  

The correspondence between increasing uncertainties and decreasing QA scores for satellite 

Rrs(λ) measurements has several implications. Firstly, it provides a first-hand evidence that the 

QA scores are a useful measure of the overall data quality for satellite-derived Rrs(λ) spectra. 

Secondly, it is important to note that the satellite validation analyses (e.g., Hlaing et al., 2013; 

Qin et al., 2017; Wei et al., 2018) tend to consider all available matchups as a whole, in which 

the satellite Rrs(λ) spectra with different QA scores are mixed. Since the moderate- and low-QA 

score data often account for a relatively small percentage of the available data (see Figure 2), 

their relatively larger uncertainties are often suppressed and less likely to dominate the overall 

uncertainty. The above analyses provided a feasible way to identify specific subgroups of the 

satellite Rrs(λ) measurements based on their QA scores. 
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 345 

3.2 Estimated Rrs(41x) and Rrs(443) 

The evaluation results for BBE-estimated Rrs(41x) and Rrs(443) are also included in Table 3 

for direct comparison with the original satellite products. Notably, all those initially negative 

Rrs(41x) and Rrs(443) values for SeaWiFS and MODISA are now restored to positive values, 

leading to a significant increase in the total number of utilizable Rrs(41x) and Rrs(443) data. The 

larger numbers of positive Rrs(41x) values could enhance the effectiveness of subsequent bio-

optical retrievals as many semi-analytical inversion algorithms (Carder et al., 1999; Lee et al., 

2002; Wei and Lee, 2015; Werdell et al., 2013) require Rrs(410) or Rrs(412) as input to separate 

phytoplankton and CDOM, which will be discussed later in Section 4. Partly because of the 

change of the number of observations, however, the BBE-estimated Rrs(412) for SeaWiFS did 

not show a reduction in its uncertainties, rather experienced some degree of increase in |ɛ|, from 

22% to 36% for the moderate-QA group. In comparison to MODISA, the estimated Rrs(412) data 

exhibited a slight increase in the biases (ɛ increased from −6% to −8% for moderate-QA group); 

this is to a large degree a result of the large biases associated with Rrs(488), Rrs(547), and 

Rrs(667) (Table 2). On the other hand, without much change to the total number of the VIIRS-

SNPP observations, the estimated Rrs(410) and Rrs(443) data show much reduced uncertainties 

for both moderate- and low-QA groups. Overall, very limited improvements were found for the 

high-QA data of three satellites. This phenomenon may be further explained from the following 

two perspectives. First, the high QA scores imply that the Rrs spectra are already of high quality. 

Estimations with the BBE algorithm may thus be superfluous for high-QA data. Second, part of 

the normalized remote sensing reflectance spectra within the LUT are also used by the QA 

model (Wei et al., 2016b); it is technically difficult to further improve the spectral shapes of 
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satellite Rrs(λ) data by the BBE algorithm. As a matter of fact, as indicated in Table 3, the 

original high-QA satellite data appear most accurate. They will less likely benefit from an 

estimation scheme as developed here. 

To further highlight the model performance, we contrasted the satellite Rrs(41x) and Rrs(443) 

with in situ matchups for the moderate-QA group of data in scatterplots (Figure 5), with the 

BBE-estimated Rrs(41x) and Rrs(443) overlaid for comparison. Note that these illustrations have 

included all available matchup data in this subgroup, including positive and negative values. As 

shown in the plots, many SeaWiFS and MODISA Rrs(412) values are negative, and even some of 

the corresponding Rrs(443) data are negative as well. Unlike SeaWiFS and MODISA, the BBE 

estimates of Rrs(412) and Rrs(443) are all physically meaningful values. The estimated Rrs(412) 

and Rrs(443) are distributed much more tightly around the 1:1 line than the original satellite data 

(for SeaWiFS, MODISA, and VIIRS-SNPP). As a result, the linear regression slopes for the 

BBE estimates and the in situ matchups are generally much closer to unity.  

 

3.3 Rrs(λ) spectral ratios 

Since the BBE algorithm is based on the knowledge of the Rrs(λ) spectral shapes, it is 

expected that such estimated Rrs(41x) and Rrs(443) should yield improvement on the Rrs(λ) 

spectral ratios. We derived the ratios of Rrs(443) to Rrs(55x) and Rrs(41x) to Rrs(443) and 

compared them with those of in situ matchup data in Table 4. Among three subgroups of data, 

very limited differences are observed in R
4 1 x
4 4 3

and R
443
55 x

for the high-QA group, which is consistent 

with the analyses of Rrs(41x) and Rrs(443) uncertainties in Table 3. For the moderate-QA data, 

the presence of many negative Rrs(41x) and Rrs(443) data have resulted in either negative R
4 1 2
4 4 3

or 

sometimes positive outliers and some negative R
443
55 x

values (see scatterplots in Figure 6). The 
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BBE algorithm improved both R
4 1 x

R
4

4 4 3
and 43

55 x
 with overall reduced uncertainties and significantly 

increased the number of utilizable data (by as much as ~20% for the moderate-QA data). The 

improvement in the spectral band ratios, along with estimated spectral values, is important for 

bio-optical inversion, in that they are indispensable for many empirical ocean color algorithms  

(Morel and Gentili, 2009; O'Reilly et al., 1998) and semi-analytical algorithms (IOCCG, 2006; 

Werdell et al., 2018). We will discuss the potential impact on bio-optical retrievals in Section 

4.3.  

 

3.4 Sensitivity of Rrs(41x) and Rrs(443) estimation 

The sensitivity of Rrs(41x) and Rrs(443) estimation to the input Rrs(λ) values at 48x, 55x, or 

67x nm is illustrated in Figure 7. Several important conclusions can be readily reached from the 

comparisons. First, the minimum uncertainty of estimated Rrs(41x) and Rrs(443) (|ɛ| ≈ 15%) is 

observable with error-free input Rrs(λ) data for all classes of waters, which can be considered as 

the inherent uncertainty for the BBE algorithm. Second, it is found that the estimations for 

Rrs(41x) and Rrs(443) are most sensitive to the uncertainty of Rrs(48x). For instance, when 

Rrs(48x) has ɛ = 30%, the BBE-estimated Rrs(41x) can be subjected to an uncertainty as large as 

|ɛ| = 50%–60% over three classes of waters. The uncertainty of input Rrs(55x) plays a secondary 

role; according to our analysis, an error of ɛ = 30% with Rrs(55x) will result in a smaller 

uncertainty for Rrs(41x), with |ɛ| less than 35%. In contrast, the uncertainty of Rrs(67x) appears to 

be the least important element to influence the Rrs(41x) and Rrs(443) uncertainties.  

The above-revealed differential dependency of the algorithm uncertainty on specific 

wavelengths can be explained by the uncertainty propagation of the BBE algorithm. In Eq. (13), 

the uncertainty of Rrs(41x) is expressed as a function of the input Rrs(λ) and nR lut

rs
(λ)  values and 
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the associated uncertainty at a specific band λj ( 48x, 55x, or 67x nm), following the principle of 

uncertainty propagation,  

1
u(41x) = ⋅ R (λ ) ⋅u(λ )

R
2 2

rs (48x) + Rrs (55x) +
rs j j

R (67x)2
rs

 
nR

lut
  (13) 

rs (412)⋅
nR

lut 2 lut 2 lut 2
rs (488) + nRrs (551) + nRrs (670)

In Eq. (13), we assumed zero uncertainty for nR
lut

rs
(λ) and uncorrelated input quantities. As the 

two fractional terms in Eq. (13) are certain for a given satellite reflectance spectrum, u(41x) is 

sensitive to the input value for Rrs(λj) and associated uncertainty u(λj). Recalling Figure 4, 

Rrs(67x) are usually smaller than Rrs(48x) and/or Rrs(55x) in the test data, the uncertainty 

propagation of the Rrs(67x) uncertainty to the total uncertainty is thus relatively less critical. In 

extremely turbid waters, the Rrs(67x) values can be very large; but the corresponding 

uncertainties tend to be small. For Class-1 waters, Rrs(48x) are almost always higher than 

Rrs(55x), thus playing a dominant role in the resulted Rrs(41x) and Rrs(443). For Class-2 waters, 

there are some instances where Rrs(55x) are comparable to or even higher than Rrs(48x); under 

these situations, Rrs(55x) may play a more important role (e.g., Figure 7c). Based on this 

analysis, the BBE algorithm may be applicable to a wide range of environments.  

According to the five combinations of uncertainties (Table 1), the increase of the uncertainties 

in input Rrs(λ) leads to increased uncertainties in estimated Rrs(41x) and Rrs(443) (Table 5). In 

particular, the absolute percentage differences for Rrs(41x) herein experienced a huge jump, from 

9% to 56%. But, recall that the |ɛ| for moderate-QA satellite Rrs(48x) and Rrs(55x) data are 

generally between 12% and 23% (Table 2). That is to say, the simulation No. 3 best describes the 

realistic situations, in which the |ɛ| for estimated Rrs(41x) varies between 25% and 37%, a range 

close to the evaluation results in Table 3. Besides, our analyses indicate a weak dependency of 
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Rrs(41x) uncertainty on the class of water. The BBE algorithm tends to bias the estimation of 

Rrs(41x) and Rrs(443) for Class-3, for which the nRrs(41x) and nRrs(443) values are often 

relatively smaller (recall Figure 4). 

 

4. Discussion  

4.1 Why the algorithm works 

The BBE algorithm infers the Rrs(λ) spectral shapes through a spectral matching procedure 

using initial satellite Rrs(λ) values measured at 48x, 55x, and 67x nm and subsequently estimates 

Rrs(41x) and Rrs(443). It is based on an implicit assumption that the normalized satellite Rrs(λ) 

values at 41x and 443 nm are approximately equal to those selected from the LUT after the 

spectral matching. According to the validation results, this assumption is reliable for the 

estimation of Rrs(λ) at blue bands. The algorithm’s success benefits from the following two facts. 

First, the Rrs(48x) and Rrs(55x) values generated from satellites are relatively accurate (Table 2) 

(also see Antoine et al., 2008; Hlaing et al., 2013; Qin et al., 2017; Zibordi et al., 2009). Second, 

the algorithm remains least sensitive to Rrs(67x) for most waters (Figure 7). These factors favor 

and facilitate the optimal performance of the BBE algorithm.   

The light absorption and scattering properties of optically active constituents determine the 

Rrs(λ) spectra, simplified as the following (Gordon et al., 1988),  

b
R

w
(λ

∝ bp
(λ) + b

b
)

 
rs

(λ)   (14) 
a

ph
(λ) + a

dg
(λ) + a

w
(λ) + b

bp
(λ) + b

bw
(λ)

where bbp(λ) and bbw(λ) are the scattering coefficients due to particulates and pure seawater, 

respectively; aph(λ), adg(λ) and aw(λ) refer to the absorption coefficients of phytoplankton, 

colored detrital material (including CDOM and detritus), and pure seawater, respectively; and, 
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aw(λ) and bbw(λ) are often taken as wavelength-specific constants (Lee et al., 2015b; Mason et al., 

2016; Zhang and Hu, 2009). Among all these inherent optical properties (IOPs), the bbp(λ) 

spectrum is monotonous under most circumstances and can be described by a power-law 

function. Thus, the spectral variability of Rrs(λ) is mostly dominated by light absorption spectra. 

The light absorption of phytoplankton is contributed by various pigments (Bricaud et al., 1995; 

Bricaud et al., 2004). In the visible domain, aph(λ) values are spectrally interdependent (Bricaud 

et al., 1998; Lee et al., 1998; Sathyendranath et al., 1987). Further, the light absorption of colored 

detrital material is also spectrally dependent and can be simplified by an exponential decay 

model. Given the spectral dependency of IOPs, Rrs(48x), Rrs(55x), and Rrs(67x) values are as a 

matter of fact interconnected with Rrs(41x) and Rrs(443). This is the basis on which Rrs(41x) and 

Rrs(443) can be estimated from Eq. (14). The accuracy of model estimation will primarily depend 

on the degree of our understanding of the IOPs and the IOP-Rrs relationships.   

 

4.2 Algorithm limitations 

We reiterate that the BBE algorithm is by no means intended to replace the measurements of 

Rrs(41x) and Rrs(443) from satellite ocean color sensors. Rather, it provides a workaround to 

estimate Rrs(41x) and Rrs(443) when the satellite-derived Rrs(λ) spectra are highly questionable 

and are almost useless in blue bands. Like other remote sensing algorithms, the BBE algorithm is 

subject to uncertainties and limitations. Fully understanding the estimation uncertainty will 

require advanced statistical methodologies (Jay et al., 2018; Wang et al., 2005) and knowledge of 

the satellite Rrs(λ) uncertainty in various waters (e.g., Hu et al., 2013). According to our 

preliminary analyses, the error propagation from Rrs(48x), Rrs(55x), and Rrs(67x) can be a 

primary source of uncertainty for model-estimated Rrs(41x) and Rrs(443). Besides, a few other 
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contributing factors merit further discussion. First, the proposed spectral matching procedure 

uses the reflectance at three base wavelengths of 48x, 55x, and 67x nm. The use of a subset of 

wavelengths for water optical classification may introduce uncertainties, which further propagate 

to the estimation of the Rrs(λ) spectral shapes, and finally to the estimated Rrs(41x) and Rrs(443). 

The results in Figure 7 and Table 5 are based upon the IOCCG (2006) data, which are well 

represented by the LUT. The uncertainties (|ɛ| ≤ 13%, −10% ≤ ɛ ≤ 1%, and 0.0004 < RMSD < 

0.002 sr−1) derived with error-free Rrs(48x), Rrs(55x), and Rrs(67x) are basically equivalent to the 

algorithm residual uncertainties originated from the use of three-band reflectance. Second, it is 

difficult (if not impossible) for the LUT to characterize all Rrs(λ) spectral shapes occurring in 

natural waters. In spite of the satisfactory validation results presented herein, there might exist 

peculiar waters not represented by the current LUT. Thus, it is necessary to continue to enrich 

the LUT towards a universal application. Third, the Rrs(λ) spectrum is determined by the water 

IOPs including the spectral slope (Sdg) for adg(λ). Variation of Sdg alone can cause substantial 

variability for Rrs(λ) in short blue bands (Wei et al., 2016a), in which case the estimation of 

Rrs(41x) and Rrs(443) will suffer from uncertainty. Lastly, the BBE algorithm has simplified the 

spectral settings to five common bands (412, 443, 488, 551, and 670 nm), which ignored the 

discrepancy of center wavelengths among SeaWiFS, MODISA, and VIIRS-SNPP. Based on 

IOCCG (2006) data, we evaluated the potential impact on Rrs(λ) values due to this ignorance. 

Comparing with the common bands, the Rrs(41x), Rrs(48x), Rrs(55x), and Rrs(67x) are subject to 

relatively small differences, with |ɛ| = 1.1%, 1.7%, 4%, and 3.6%, respectively. These 

uncertainties are much smaller than the inherent uncertainties of the BBE algorithm and/or those 

from measurements, thus not important in this context. Although IOCCG synthetic data are not 

inclusive of every types of waters in nature, the uncertainty analysis based on them should 
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provide a representative assessment. The algorithm uncertainty can be further explored when the 

uncertainty of satellite-derived Rrs(λ) spectra is better known. 

 

4.3 Potential improvement on bio-optical retrievals 

The primary purpose of maintaining high-quality satellite Rrs(λ) measurements is to provide 

the aquatic science community with reliable bio-optical retrievals. To demonstrate the 

contributions of the algorithm, we derived aph(443) and adg(443) from the original satellite Rrs(λ) 

data, estimated Rrs(λ) data at blue bands, and in situ Rrs(λ) matchups, using the quasi-analytical 

algorithm (QAA) (Lee et al., 2002). According to the results of uncertainty analysis (Table 6), 

the implementation of the BBE algorithm has exerted negligible impacts on the aph(443) and 

adg(443) retrievals for the high-QA satellite data. This is consistent with the observation in 

Section 3 in which the BBE algorithm was shown unable to make substantial improvements to 

Rrs(41x) and Rrs(443) for the high-QA satellite data (Table 3). For the moderate-QA data, the 

retrievals of adg(443) from BBE-estimated Rrs spectra are much more accurate than those from 

the original satellite Rrs(λ) data (except for SeaWiFS), with much reduced |ϕ|, ϕ, and RMSD. 

Also inspiringly, the total number of valid aph(443) and adg(443) retrievals from SeaWiFS and 

MODISA are increased by as much as 15%–30%. This improvement is significant as accurate, 

and potentially more representative, data points will be accounted for in relevant ocean color 

applications. Similar increases in the number of bio-optical products and decreases in adg(443) 

uncertainty are also found in the low-QA SeaWiFS and MODISA data. In contrast, no significant 

change in the total numbers of aph(443) and adg(443) retrievals are observed for VIIRS-SNPP, 

mostly because VIIRS-SNPP has nearly no negative Rrs(410) or Rrs(443) values (see Figure 5 

and Figure 6).  
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4.4 Condition of applicability 

It is important to understand the condition of applicability under which the BBE algorithm 

can be best used to estimate Rrs(41x) and Rrs(443). The quality flagging system is the quality-

control measure adopted by space agencies like NASA and NOAA to generate scientific quality 

data (Bailey and Werdell, 2006; Mikelsons et al., 2020). In practice, the often-used filtering flags 

include land, cloud, stray light, high glint, low radiance at 55x nm, high TOA radiance, and 

atmospheric correction failure, etc. The pixels passing the flag check will be regarded as good 

quality and included in the higher-level products. The satellite Rrs(λ) data used for our analyses 

have been checked for valid quality flags also. The QA scoring system (Wei et al., 2016b) is a 

quantitative measure for the quality of each Rrs(λ) spectrum, which can further help to identify 

questionable data. The present study has considered both the flags and the QA scores. According 

to Figure 2, about 20% of the satellite data available for validation analysis, which have passed 

the quality flag filtering, are found to have moderate- or low-QA scores (QA ≤ 0.6). This portion 

of satellite Rrs(λ) spectra is characteristic of high uncertainties and can be further improved by 

the BBE algorithm. In Figure 8, we illustrate the percentage of moderate- and low-QA satellite 

Rrs(λ) in the U.S. coastal and inland waters. Within each plot, the pixels have passed the quality 

flag filtering. Obviously, the “correctable” satellite Rrs(λ) products are mostly found in the 

nearshore waters, where the atmospheric conditions and water optical properties are most likely 

complex. Despite the positive results (Table 3 and Table 4), it is without doubt that estimating 

Rrs(41x) and Rrs(443) with the BBE algorithm in such complex waters can sometimes be 

challenging, especially when the LUT does not sufficiently characterize the complex water 

optical variations. There is a continuous need for accumulation and inclusion of representative in 

situ Rrs(λ) spectra in the LUT. 
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 550 

4.5 Satellite ocean color image processing 

The coastal waters are typical of high absorption and scattering properties, with non-

negligible water-leaving radiance at the NIR bands (Siegel et al., 2000; Wang and Shi, 2005). 

Close to sources of air pollutions, the types of aerosols are complex and more difficult to predict 

(IOCCG, 2010). The oceanic and atmospheric conditions together render a very critical situation 

for atmospheric correction. Here, we used an imagery of the northern Gulf of Mexico captured 

by VIIRS-SNPP to demonstrate the BBE algorithm performance. As shown in Figure 9a, the 

original image was processed with the latest MSL12 ocean color data processing system, which 

incorporated the Wang and Jiang (2018) algorithm. It is shown that the Rrs(410) values are 

extremely low in the northern shelf waters, many of which are infinitesimally close to zero. 

According to the quality flags, there possibly existed strongly absorbing aerosols over a great 

number of pixels in these waters (highlighted by the dashed line in Figure 9a). To implement the 

BBE algorithm, all the pixels were first subjected to the quality check for land, cloud, stray light, 

high glint, and high TOA, etc. Then, the moderate- and low-QA pixels were identified and 

finally Rrs(410) and Rrs(443) were estimated with the proposed algorithm. The new Rrs(410) 

image is presented in Figure 9b, which includes the model-estimated Rrs(410) values at low- and 

moderate-QA pixels and the original values at high-QA pixels. It is obvious that the close-to-

zero pixels are rectified to much larger values; some originally higher Rrs(410) values are 

decreased. As a result, the estimated Rrs(410) image over the Mississippi Delta waters has shown 

characteristics of spatial pattern with realistic gradients and amplitudes.  

 

5. Conclusions 
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Accurate retrieval of remote sensing reflectance in the two short blue bands of 41x nm and 

443 nm in coastal and inland waters from ocean color satellites has been a challenge because of 

the complex oceanic and atmospheric properties. Whereas great effort has been put in, a 

considerable proportion of satellite reflectance products are still found susceptible to large 

uncertainties. In this study, we developed a spectral shape based algorithm to estimate Rrs(41x) 

and Rrs(443). The algorithm uses a spectral-matching procedure to determine the spectral shapes 

for the satellite Rrs(λ) spectra in question based on the initial satellite Rrs(λ) measurements at the 

three wavelengths of 48x, 55x, and 67x. This is a novel attempt to complement and enhance the 

existing efforts for atmospheric correction. Evaluation with satellite (SeaWiFS, MODISA, and 

VIIRS-SNPP) and in situ Rrs(λ) matchups in global oceans, with most of the data located within 

coastal waters, shows that the estimated Rrs(41x) and Rrs(443) have much-reduced uncertainties 

with respect to the initial satellite data. It can be expected that such estimated Rrs(41x) and 

Rrs(443) data will enhance the quality of bio-optical retrievals for the absorption coefficients of 

phytoplankton and CDOM and detritus, and increase the quantities of utilizable bio-optical 

products. Despite the inherent uncertainty (~10%), the algorithm is shown to be applicable to a 

wide range of waters. Recognizing that the current algorithm cannot characterize every spectral 

shapes in nature, we stress the necessity to further enrich the data pool included in the LUT.  
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List of Figure Captions 

Figure 1. Satellite matchup stations for SeaWiFS (denoted by open circles “○”), MODISA 

(denoted by crosses “+”), and VIIRS-SNPP (denoted by open diamonds “◊”) in the global 

oceans. The background image refers to the annual chlorophyll-a concentration for 2010 derived 

from SeaWiFS. 

Figure 2. Frequency distribution of the QA scores for SeaWiFS, MODISA, and VIIRS-SNPP 

Rrs(λ) data. The QA scores are calculated based on the five “common” bands of 41x, 443, 48x, 

55x, and 67x nm. 

Figure 3. Ranges of nRrs(λ) values used in different data sets. Note that the in situ matchup data 

are used to describe the variability of corresponding satellite missions in order to avoid the 

negative nRrs(41x) values.  

Figure 4. Normalized remote sensing reflectance spectra representative of three distinctive 

optical water classes based on the IOCCG (2006) Rrs(λ) data at 412, 443, 488, 551, and 670 nm. 

The shaded areas describe the range of variation of the spectral values of nRrs(λ).    

Figure 5. Comparison of moderate-QA (0.4  The shaded areas descRrs(λ) data and in situ 

measurements at 41x and 443 nm bands. The symbols of red “○” and blue “+” denote the 

results before and after the implementation of the BBE algorithm. Linear regression results are 

also plotted for two data sets. Note that the scatterplots have included all available data points, 

positive and negative. 

Figure 6. Comparison of moderate-QA (0.4 ≤ QA ≤ 0.6) satellite Rrs(λ) spectral ratios with in 

situ matchups. The symbols of red lite l available data points, positive and negative. the 

implementation of the BBE algorithm. Linear regression results are also plotted for two data sets. 

Note that the scatterplots have included all available data points, positive and negative. 

Figure 7. Uncertainty of estimated Rrs(412) and Rrs(443) induced by erroneous Rrs(λ) at 488, 

551, or 670 nm bands. The first, second, and third rows refer to Class  1, Class  2, and Class  3 

waters, respectively, corresponding to Figure 4.  

Figure 8. Percentage of moderate-QA and low-QA satellite data in (a) the U.S. west coasts (b) 

the U.S. east coasts. The two highlighted areas are (c) the Vancouver Island and (d) 

Massachusetts Bay and the Gulf of Maine. The percentage data shown here are derived from the 

MODISA Level 3 mapped (9 km) daily remote sensing reflectance products in 2003, with the 

QA scores computed based on the Rrs(λ) at five bands (412, 443, 488, 547, and 667 nm).  

Figure 9. (a) VIIRS-SNPP Rrs(410) image in the northern Gulf of Mexico (Image id: 

V2016048190213_NPP_SCINIR_L2). (b) The same image but with estimated Rrs(410) for 

moderate- and low-QA pixels. White pixels indicate the failure of quality checks for land, cloud, 
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stray light, high glint, and/or high TOA, etc. The dashed line in (a) indicates where the strongly 

absorbing aerosols occur, and the negative Rrs(410) values are likely to present, according to the 

quality flags.   
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 835 

Table 1. Synthesized combinations of absolute percentage errors |ɛ| for Rrs(488), 
Rrs(551), and Rrs(670) data for uncertainty analysis. 

̅836 

837 

Class 1 (N = 
 

173)  Class 2 (N = 137)  Class 3 (N = 190) 

Rrs(488) Rrs(551) Rrs(670)  Rrs(488) Rrs(551) Rrs(670)  Rrs(488) Rrs(551) Rrs(670) 
1 0 0 0  0 0 0  0 0 0 
2 5% 5% 20%  15% 10% 20%  15% 10% 15% 
3 10% 15% 30%  20% 15% 30%  20% 15% 20% 
4 20% 20% 45%  25% 20% 35%  25% 20% 25% 
5 30% 20% 60%  30% 20% 40%  30% 25% 30% 

 838 
* The chlorophyll-a concentration (± standard deviation) for each water class is as below: Class 1, Chl = 

0.14 (± 0.13) mg m-3; Class 2, Chl = 1.6 (± 1.8) mg m-3; Class 3, Chl = 15 (± 9) mg m-3. 
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 843 

Table 2. Uncertainties of satellite Rrs(λ) values at three wavelengths (48x, 55x, 
and 67x nm) generated from SeaWiFS, MODISA, and VIIRS-SNPP in the global 
waters. The uncertainties are calculated based upon the satellite and in situ 
matchups. The data are divided into three subgroups according to the QA scores 
of the satellite Rrs(λ) spectra. Negative values are excluded from analysis. 

844 

845 

846 

847 

848 

 849 

1 RMSD is given in absolute units of sr-1. 850 

 851 

 852 

  853 

  SeaWiFS  MODISA  VIIRS-SNPP 

  Rrs(490) Rrs(555) Rrs(670)  Rrs(488) Rrs(547) Rrs(667)  Rrs(486) Rrs(551) Rrs(671) 

|ɛ| 46% 23% 21%  40% 22% 28%  34% 27% 48% 

QA ≤ ɛ -45% -23% -19%  -37% -21% -26%  -19% -17% -24% 
0.2 1RMSD  0.0011 0.0006 0.0002  0.0007 0.0006 0.0002  0.0009 0.0005 0.0002 

*N  92 95 81  101 101 91  24 24 22 

|ɛ| 18% 15% 11%  24% 16% 37%  18% 11% 23% 
0.4 ≤ 

ɛ -10% -7% 0%  -20% -15% -31%  -5% -5% -1% 
QA ≤ 

RMSD 0.0006 0.0004 0.0000  0.0007 0.0005 0.0002  0.0004 0.0003 0.0002 0.6 
N 359 359 321  576 576 515  239 239 236 

|ɛ| 10% 11% 11%  13% 11% 22%  13% 11% 20% 

QA ≥ ɛ 0% -4% 0%  -10% -9% -16%  -10% -9% 2% 
0.8 RMSD 0.0004 0.0004 0.0001  0.0005 0.0005 0.0002  0.0006 0.0005 0.0002 

N 2055 2055 1999  2932 2932 2866  2148 2148 2134 

̅

̅

̅

̅

̅

̅
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 854 

Table 3. Uncertainties of satellite Rrs(λ) values at two blue bands (41x and 443 
nm) generated from SeaWiFS, MODISA, and VIIRS-SNPP in the global waters. 
The uncertainties are calculated based upon the satellite and in situ matchups. The 
data are divided into three subgroups according to the QA scores of the satellite 
Rrs(λ) spectra. Negative values are excluded from analysis. 

855 

856 

857 

858 

859 

 860 

   861 

  862 

Original data 

  SeaWiFS  MODISA  VIIRS-SNPP 

    Rrs(412) Rrs(443) Rrs(412) Rrs(443) Rrs(410) Rrs(443) 

QA ≤ 0.2 |ɛ| 82% 71%  89% 62%  80% 32% 

 ɛ -52% -64%  10% -52%  42% 11% 

 RMSD 0.0024 0.0017  0.0018 0.0007  0.0016 0.0008 

 N 29 61  35 75  23 23 

0.4 ≤ QA ≤ 0.6 |ɛ| 22% 31%  51% 38%  83% 38% 

 ɛ 0% -14%  -8% -11%  36% 20% 

 RMSD 0.0009 0.0008  0.0010 0.0007  0.0013 0.0007 

 N 279 346  450 561  235 239 

QA ≥ 0.8 |ɛ| 17% 18%  27% 17%  28% 19% 

 ɛ 0% 4%  3% 3%  7% 5% 

 RMSD 0.0007 0.0007  0.0006 0.0005  0.0008 0.0006 

 N 2049 2055  2913 2932  2148 2148 

BBE-estimated data 

  SeaWiFS  MODISA  VIIRS-SNPP 

  Rrs(412) Rrs(443)  Rrs(412) Rrs(443)  Rrs(410) Rrs(443) 

QA ≤ 0.2 |ɛ| 59% 39%  51% 36%  52% 42% 

 ɛ 30% -17%  -3% -17%  21% 4% 

 RMSD 0.0008 0.0006  0.0004 0.0004  0.0012 0.0009 

 N 95 95  101 101  24 24 

0.4 ≤ QA ≤ 0.6 |ɛ| 36% 23%  39% 30%  41% 28% 

 ɛ 8% -4%  -6% -13%  18% 10% 

 RMSD 0.0009 0.0007  0.0006 0.0005  0.0006 0.0005 

 N 359 359  576 576  239 239 

QA ≥ 0.8  |ɛ| 22% 17%  28% 18%  27% 19% 

 ɛ -1% -2%  0% -2%  1% 0% 

 RMSD 0.0009 0.0007  0.0006 0.0005  0.0007 0.0005 

 N 2055 2055  2932 2932  2148 2148 
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̅
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Table 4. Uncertainties of satellite retrieved (λ) spectral ratios, R
41x and R

443
Rrs 443 55x , for 

SeaWiFS, MODISA, and VIIRS-SNPP in the global waters. The uncertainties are 
calculated based upon the satellite and in situ matchups. The data are divided into 
three subgroups according to the QA scores of the satellite Rrs(λ) spectra. 
Negative values are excluded from analysis. 
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              884 
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With orignal Rrs(41x) and Rrs(443) data 

  SeaWiFS  MODISA  VIIRS-SNPP 

  443 412  443 412  443 410
R  R  R  R  R  R  555 443 547 443 551 443

QA ≤ 0.2 |ɛ| 62% 60%  53% 58%  44% 39% 

 ɛ -52% -32%  -38% 34%  44% 33% 

 RMSD 0.4495 0.4718  0.2224 0.5126  0.4925 0.4135 

 N 61 29  75 35  23 23 

0.4 ≤ QA ≤ 0.6 |ɛ| 24% 16%  36% 25%  37% 43% 

 ɛ -4% -3%  3% -7%  30% 10% 

 RMSD 0.2452 0.1455  0.1982 0.2159  0.2358 0.3329 

 N 346 279  561 450  239 235 

QA ≥ 0.8  |ɛ| 17% 9%  17% 12%  18% 12% 

 ɛ 11% -1%  13% -1%  15% 1% 

 RMSD 0.1848 0.0812  0.1053 0.1015  0.1272 0.1002 

 N 2055 2049  2932 2913  2148 2148 

With BBE-estimated Rrs(41x) and Rrs(443) data 

  SeaWiFS  MODISA  VIIRS-SNPP 
443 412 443 412 443 410  R  R   R  R   R  R555 443 547 443 551 443  

QA ≤ 0.2 |ɛ| 35% 41%  29% 29%  31% 23% 

 ɛ 6% 36%  -3% 25%  16% 3% 

 RMSD 0.1615 0.3145  0.0940 0.2298  0.3699 0.2163 

 N 95 95  101 101  24 24 

0.4 ≤ QA ≤ 0.6 |ɛ| 18% 20%  22% 16%  25% 18% 

 ɛ 0% 11%  1% 5%  18% 5% 

 RMSD 0.1988 0.1838  0.1288 0.1390  0.1405 0.1672 

 N 359 359  576 576  239 239 

QA ≥ 0.8 |ɛ| 15% 12%  16% 13%  16% 13% 

 ɛ 4% 0%  7% 1%  9% 1% 

 RMSD 0.1594 0.1125  0.0938 0.1123  0.1057 0.1149 

 N 2055 2055  2932 2932  2148 2148 
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Table 5. Combined uncertainty for the estimated Rrs(412) and Rrs(443) as a result 
of the uncertainty propagation from the input Rrs(λ) spectra at 488, 551, and 670 
nm. The uncertainties for the input Rrs(λ) spectra are tabulated in Table 1. 

887 

888 
889 

   Rrs(412)  Rrs(443) 

 Chl No. |ɛ| ɛ RMSD N  |ɛ| ɛ RMSD N 

1 13% -10% 0.0020 173  7% -5% 0.0009 173 

Class 1 
0.14±0.13 

-3mg m  

2 

3 

4 

16% 

25% 

40% 

-6% 0.0021 

-4% 0.0035 

-1% 0.0057 

  

  

  

10% 

17% 

32% 

-4% 0.0011 

-2% 0.0021 

0% 0.0036 

 

 

 

5 56% -1% 0.0077   47% 1% 0.0051  

1 9% -2% 0.0008 137  4% -1% 0.0004 137 

Class 2 
1.6±1.8  

-3mg m  

2 

3 

4 

28% 

35% 

41% 

-3% 0.0015 

-3% 0.0019 

-2% 0.0023 

  

  

  

22% 

29% 

35% 

0% 0.0012 

-1% 0.0016 

-1% 0.0020 

 

 

 

5 46% -2% 0.0027   40% -1% 0.0023  

1 13% 1% 0.0008 190  6% 0% 0.0005 190 

Class 3 
15±9  

-3mg m  

2 

3 

4 

30% 

37% 

43% 

11% 0.0011 

18% 0.0013 

24% 0.0016 

  

  

  

22% 

27% 

31% 

8% 0.0009 

12% 0.0011 

16% 0.0014 

 

 

 

5 47% 30% 0.0018   35% 20% 0.0016  

 

̅ ̅ ̅ ̅
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Table 6. Uncertainties of aph(443) and adg(443) derived from the original satellite 
Rrs(λ) data and estimated Rrs(λ) data at blue bands. The uncertainties are 
calculated with regard to the retrievals from corresponding in situ Rrs(λ). All 
negative Rrs(41x) and Rrs(443) values and negative aph(443) and adg(443) 
retrievals are excluded from the comparison. Negative values are excluded from 
analysis. 

894 

895 

896 

897 

898 

899 

With orignal Rrs(41x) and Rrs(443) data 

  SeaWiFS  MODISA  VIIRS-SNPP 

  aph(443) adg(443)  aph(443) adg(443)  aph(443) adg(443) 

QA ≤ 0.2 |ϕ| 46% 136%  56% 142%  38% 132% 

 ϕ 0% 34%  -12% 4%  -4% -91% 

 RMSD  0.0213 0.2878  0.0464 0.3031  0.0195 0.0359 

 N 7 29  16 28  15 19 

0.4 ≤ QA ≤ 0.6 |ϕ| 48% 64%  67% 89%  47% 117% 

 ϕ -26% 15%  -42% -3%  -10% -24% 

 RMSD 0.0070 0.0179  0.0324 0.0679  0.0334 0.2291 

 N 169 268  261 418  116 190 

QA ≥ 0.8 |ϕ| 44% 42%  49% 58%  41% 57% 

 ϕ -21% -4%  -21% -13%  -10% -11% 

 RMSD 0.0155 0.0144  0.0314 0.0494  0.0260 0.0477 

 N 1786 2024  2258 2873  1685 2088 

With BBE-estimated Rrs(41x) and Rrs(443) data  

  SeaWiFS  MODISA  VIIRS-SNPP 

  aph(443) adg(443)  aph(443) adg(443)  aph(443) adg(443) 

QA ≤ 0.2 |ϕ| 87% 105%  78% 82%  58% 72% 

 ϕ 34% -15%  33% -14%  -55% 12% 

 RMSD 0.1908 0.3423  0.1680 0.2426  0.0249 0.0524 

 N 55 107  66 118  15 20 

0.4 ≤ QA ≤ 0.6 |ϕ| 51% 66%  59% 59%  62% 69% 

 ϕ 5% -16%  -19% 5%  -32% -21% 

 RMSD 0.0102 0.0333  0.0367 0.0694  0.0435 0.0868 

 N 202 345  327 548  118 219 

QA ≥ 0.8  |ϕ| 45% 48%  50% 57%  49% 56% 

 ϕ -13% 0%  -13% -11%  -8% -7% 

 RMSD 0.0155 0.0211  0.0320 0.0566  0.0306 0.0532 

 N 1791 2030  2268 2907  1685 2102 

 900 

 901 

  902 

�

�

�

�

�

�

�

�

�

�

�

�



41 

 

903 

 904 

 905 

 906 

Figure 1. Satellite matchup stations for SeaWiFS (denoted by open circles “○”), 

MODISA (denoted by crosses “+”), and VIIRS-SNPP (denoted by open diamonds 

“◊”) in the global oceans. The background image refers to the annual chlorophyll-

a concentration for 2010 derived from SeaWiFS. 
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Figure 2. Frequency distribution of the QA scores for SeaWiFS, MODISA, and 

VIIRS-SNPP Rrs(λ) data. The QA scores are calculated based on the five 

“common” bands of 41x, 443, 48x, 55x, and 67x nm. 

914 

915 

916 

 917 

  918 



43 

 

 919 

 920 

Figure 3. Ranges of nRrs(λ) values used in different data sets. Note that the in situ 

matchup data are used to describe the variability of corresponding satellite 

missions in order to avoid the negative nRrs(41x) values.  
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Figure 4. Normalized remote sensing reflectance spectra representative of three 

distinctive optical water classes based on the IOCCG (2006) Rrs(λ) data at 412, 

443, 488, 551, and 670 nm. The shaded areas describe the range of variation of 

the spectral values of nRrs(λ).    
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Figure 5. Comparison of moderate-QA (0.4 ≤ QA ≤ 0.6) satellite Rrs(λ) data and 

in situ measurements at 41x and 443 nm bands. The symbols of red “○” and blue 

“+” denote the results before and after the implementation of the BBE algorithm. 

Linear regression results are also plotted for two data sets. Note that the 

scatterplots have included all available data points, positive and negative. 
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Figure 6. Comparison of moderate-QA (0.4 ≤ QA ≤ 0.6) satellite Rrs(λ) spectral 

ratios with in situ matchups. The symbols of red “○” and blue “+” denote the 

results before and after the implementation of the BBE algorithm. Linear 

regression results are also plotted for two data sets. Note that the scatterplots have 

included all available data points, positive and negative. 

950 

951 

952 

953 

954 

 955 



47 

 

 956 

 957 

 958 

Figure 7. Uncertainty of estimated Rrs(412) and Rrs(443) induced by erroneous 

Rrs(λ) at 488, 551, or 670 nm bands. The first, second, and third rows refer to 

Class  1, Class  2, and Class  3 waters, respectively, corresponding to Figure 4.  
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Figure 8. Percentage of moderate-QA and low-QA satellite data in (a) the U.S. 

west coasts and inland waters; and (b) the U.S. east coasts and inland waters. The 

two highlighted areas are (c) the Vancouver Island and (d) Massachusetts Bay and 

the Gulf of Maine. The percentage data shown here are derived from the 

MODISA Level 3 mapped (9 km) daily remote sensing reflectance products in 

2003, with the QA scores computed based on the Rrs at five bands (412, 443, 488, 

547, and 667 nm).  
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Figure 9. (a) VIIRS-SNPP Rrs(410) image in the northern Gulf of Mexico (Image 

id: V2016048190213_NPP_SCINIR_L2). (b) The same image but with estimated 

Rrs(410) for moderate- and low-QA pixels. White pixels indicate the failure of 

quality checks for land, cloud, stray light, high glint, and/or high TOA, etc. The 

dashed line in (a) indicates where the strongly absorbing aerosols occur, and the 

negative Rrs(410) values are likely to present, according to the quality flags.  
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